精英家教网 > 高中数学 > 题目详情
1.设点P为有公共焦点F1、F2的椭圆M和双曲线Γ的一个交点,$cos∠{F_1}P{F_2}=\frac{4}{5}$,椭圆M的离心率为e1,双曲线Γ的离心率为e2.若e2=2e1,则e1=$\frac{{\sqrt{130}}}{20}$.

分析 由椭圆及双曲线的定义可知m+n=2a1,m-n=2a2.利用余弦定理,求得10=$\frac{1}{{e}_{1}^{2}}$+$\frac{9}{{e}_{2}^{2}}$,将e2=2e1,即可求得e1

解答 解:设椭圆与双曲线的半长轴分别为a1,a2,半焦距为c.e1=$\frac{c}{{a}_{1}}$,e2=$\frac{c}{{a}_{2}}$.
设|PF1|=m,|PF2|=n,不妨设m>n,
则m+n=2a1,m-n=2a2
∴m2+n2=2${a}_{1}^{2}$+2${a}_{2}^{2}$,mn=${a}_{1}^{2}$-${a}_{2}^{2}$
4c2=m2+n2-2mncos∠F1PF2
∴4c2=2${a}_{1}^{2}$+2${a}_{2}^{2}$-2(${a}_{1}^{2}$-${a}_{2}^{2}$)×$\frac{4}{5}$.
整理得:10c2=${a}_{1}^{2}$+9${a}_{2}^{2}$,
∴10=$\frac{1}{{e}_{1}^{2}}$+$\frac{9}{{e}_{2}^{2}}$,又e2=2e1
∴40${e}_{1}^{2}$=13,e1∈(0,1).
解得:e1=$\frac{{\sqrt{130}}}{20}$.
∴椭圆的离心率e1=$\frac{{\sqrt{130}}}{20}$.
故答案为:$\frac{{\sqrt{130}}}{20}$.

点评 本题考查双曲线及椭圆的离心率公式,考查余弦定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.a、b均为实数,则a<b<0是a2>b2的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(ax2+x-1)ex
(1)若a<0时,讨论函数f(x)的单调性;
(2)若g(x)=e-xf(x)+lnx,过O(0,0)作y=g(x)切线l,已知切线l的斜率为-e,求证:-$\frac{2{e}^{2}+e}{2}$<a<-$\frac{e+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点A(1,1)在直线mx+ny-3mn=0上,其中,mn>0,则m+n的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3),左右焦点分别为F1,F2,过F1的直线l交椭圆于A、B两点,若|BF2|+|AF2|的最大值为10,则b的值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,抛物线E:x2=2py(p>0)的焦点为(0,1),圆心M在射线y=2x(x≥0)上且半径为2的圆M与y轴相切.
(Ⅰ)求抛物线E及圆M的方程;
(Ⅱ)过P(2,0)作两条相互垂直的直线,与抛物线E相交于A,B两点,与圆M相交于C,D两点,N为线段CD的中点,当${S_{△NAB}}=4\sqrt{5}$,求AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=sin2(x-$\frac{π}{4}$)的图象沿x轴向右平移m个单位(m>0),所得图象关于y轴对称,则m的最小值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的公差为d,d≠0,若{an}的前10项之和大于其前21项之和,则(  )
A.d<0B.d>0C.a16<0D.a16>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点P是边长为2的正三角形ABC的三边上的动点,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的取值范围为[-$\frac{9}{8}$,2].

查看答案和解析>>

同步练习册答案