【题目】已知函数.
(1)若是的一个极值点,判断的单调性;
(2)若有两个极值点,,且,证明:.
【答案】(1)在单调递减,在单调递增.(2)见解析
【解析】
(1)求出导函数,由极值点求出参数,确定的正负得的单调性;
(2)求出,得极值点满足:
所以,由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,利用导数的知识可证得结论成立.
(1)由已知得.
因为是的一个极值点,所以,即,
所以,
令,则,
令,得,令,得;
所以在单调递减,在单调递增,
又当时,,,
所以当时,,当时,;
即在单调递减,在单调递增.
(2),因此极值点满足:
所以由(1)即,不妨设.
要证,则只要证,而,因此由的单调性,只要能证,即即可.
令,
则,
当时,,,,所以,
即在单调递增,又,
所以,
所以,即,
又,,在单调递增,
所以,即.
科目:高中数学 来源: 题型:
【题目】某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:
(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.4,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;
(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;
(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令.求:
(1)所取各值的分布列;
(2)随机变量的数学期望与方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且圆心到直线的距离比大.
(1)求动圆圆心的轨迹的方程;
(2)已知轨迹与直线相交于两点.试问,在轴上是否存在一个定点使得是一个定值?如果存在,求出定点的坐标和这个定值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线的交点为、,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买商品的概率分别为,,,至少购买一种的概率为,最多购买两种的概率为.假设该网民是否购买这三种商品相互独立.
(1)求该网民分别购买两种商品的概率;
(2)用随机变量表示该网民购买商品所享受的优惠券钱数,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)求出易倒伏玉米茎高的中位数;
(2)根据茎叶图的数据,完成下面的列联表:
抗倒伏 | 易倒伏 | |
矮茎 | ||
高茎 |
(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com