精英家教网 > 高中数学 > 题目详情
在正三棱柱ABC-A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所构成的角为
 
考点:二面角的平面角及求法
专题:空间角
分析:以A为坐标原点,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出平面DBC1与平面CBC1所构成的角的大小.
解答: 解:以A为坐标原点,AC为y轴,AA1为z轴,建立空间直角坐标系.
设底面边长为2a,侧棱长为2b,
则A(0,0,0),C(0,2a,0),D(0,a,0),
B(
3
a,a,0),C1(0,2a,2b),B1
3
a,a,2b).
AB1
BC1
,得
AB1
BC1
=0,即2b2=a2
n
1=(x,y,z)为平面DBC1的一个法向量,
n
DB
=0,
n
DC1
=0.
3
ax=0
ay+2bz=0
,又2b2=a2,令z=1,
解得
n
=(0,-
2
,1).
同理可求得平面CBC1的一个法向量为
m
=(1,
3
,0).
设平面DBC1与平面CBC1所构成的角的平面角为θ,
cosθ=|cos<
m
n
>|=|
-
6
3
×2
|=
2
2
,得θ=45°.
∴平面DBC1与平面CBC1所构成的角为45°.
故答案为:45°.
点评:本题考查二面角的大小的求法,是中档题,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
mx2-2x+1
的定义域为R,则实数m的取值范围是(  )
A、(0,1)
B、(1,+∞)
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+bx2+cx+2
(1)若f(x)在x=1时有极值-1,求b,c的值;
(2)在(1)的条件下,若函数f(x)的图象与函数y=k的图象恰有三个不同的交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:lg
1
2
-lg
5
8
+lg12.5-log89•log278+e2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两焦点为F1,F2.若椭圆上存在点Q,使∠F1QF2=120°,椭圆离心率e的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形ABCD中,AB=AD,BC=CD,则对角线BD与AC所成的角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的频率分布直方图如下:

已知样本中身高在[150,155)cm的女生有1人.
(Ⅰ)求出样本中该校男生的人数和女生的人数;
(Ⅱ)估计该校学生身高在170~190cm之间的概率;
(Ⅲ)从样本中身高在185~190cm之间的男生和样本中身高在170~180cm之间的女生中随机抽取3人,记被抽取的3人中的女生人数为X.求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=4和直线l:mx-y+1-3m=0,当直线l与圆C相切,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a b是非负数 且满足2≤a+2b≤4 那么(a+1)2+(b+1)2的取值范围是(  )
A、[5,
26
]
B、[5,26]
C、[
5
7
5
5
]
D、[
26
7
5
5
]

查看答案和解析>>

同步练习册答案