【题目】在△ABC中,角A,B,C的对边分别为a,b,c,并且b=2
(1)若角A,B,C成等差数列,求△ABC外接圆的半径;
(2)若三边a,b,c成等差数列,求△ABC内切圆半径的最大值.
【答案】
(1)解:由A,B,C成等差数列及A+B+C=π,得B= ,
设△ABC外接圆的半径为R,由正弦定理2R= ,R=
(2)解:由三边a,b,c成等差数列得2b=a+c,
所以a+b+c=6,
设△ABC内切圆半径为r,面积为S,则S= (a+b+c)r= accosB,
所以r= ,
因为a+c=4≥2,
所以ac≤4,
cosB= = = = ﹣1≥ ﹣1= (a=c取等号),
所以B∈(0, ],
所以sinB≤ ,(B= 时取等号),
所以r= ≤ = (a=c,B= 时取等号,即三角形为正三角形时)
【解析】(1)由等差数列的性质,可得B= ,根据正弦定理,即可求出半径;(2)由等差数列的性质可得a+b+c=6,根据三角的面积公式和余弦定理和基本不等式即可求出.
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ∥ ,求tanx的值;
(2)若 ⊥ ,又x∈[π,2π],求sinx+cosx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理过程是演绎推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人
B. 两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
C. 由平面三角形的性质,推测空间四边形的性质
D. 在数列{an}中,a1=1,an= (an-1+)(n≥2),由此归纳出{an}的通项公
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com