精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,并且b=2
(1)若角A,B,C成等差数列,求△ABC外接圆的半径;
(2)若三边a,b,c成等差数列,求△ABC内切圆半径的最大值.

【答案】
(1)解:由A,B,C成等差数列及A+B+C=π,得B=

设△ABC外接圆的半径为R,由正弦定理2R= ,R=


(2)解:由三边a,b,c成等差数列得2b=a+c,

所以a+b+c=6,

设△ABC内切圆半径为r,面积为S,则S= (a+b+c)r= accosB,

所以r=

因为a+c=4≥2,

所以ac≤4,

cosB= = = = ﹣1≥ ﹣1= (a=c取等号),

所以B∈(0, ],

所以sinB≤ ,(B= 时取等号),

所以r= = (a=c,B= 时取等号,即三角形为正三角形时)


【解析】(1)由等差数列的性质,可得B= ,根据正弦定理,即可求出半径;(2)由等差数列的性质可得a+b+c=6,根据三角的面积公式和余弦定理和基本不等式即可求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于不等式的解集为.

(1)当为空集时,求的取值范围;

(2)在(1)的条件下,求的最小值;

(3)当不为空集,且时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求实数的值;

(2)若,试讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50

B. 两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠AB180°

C. 由平面三角形的性质,推测空间四边形的性质

D. 在数列{an}中,a11an (an1)(n≥2),由此归纳出{an}的通项公

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象与函数h(x)x2的图象关于点A(0,1)对称.

(1)求函数f(x)的解析式;

(2)g(x)f(x)g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4/套时,每日可售出套题21千套.

1)求的值;

2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

同步练习册答案