精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.
(1)证明:连接BD,∵在△PBD中,E,F分别为PB、PD中点,
∴EFBD-----(2分)
又EF?平面ABCD,∴EF平面ABCD----------(6分)
(2)取AD中点G,连接CG、PG.
∵四边行ABCD中,BCAD,AD=2BC.
∴CGAB-----------(8分)
又∵AB⊥AD,AB⊥AP,AP∩AD=A,
∴AB⊥平面PAD∴CG⊥平面PAD
∴∠GPC是PC与平面PAD所成的角-------------------(11分)
设PA=2a,则AB=CG=2a,BC=AG=a,AC=
5
a,∴PC=
PA2+AC2
=3a
在RT△PGC中,sin∠GPC=
CG
PC
=
2a
3a
=
2
3

∴∠GPC=arcsin
2
3

即PC与平面PAD所成的角是arcsin
2
3
----------------(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图ABCD-A1B1C1D1是正方体,B1E1=D1F1=
A1B1
4
,则BE1与DF1所成的角的余弦值是(  )
A.
15
17
B.
1
2
C.
8
17
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥A-BCD中,DA,DB,DC两两垂直,且DB=DC=2,点E为BC的中点,若直线AE与底面BCD所成的角为45°,则三棱锥A-BCD的体积等于(  )
A.
2
3
B.
4
3
C.2D.
2
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,则直线BD1与平面BCC1B1所成角的正弦值为(  )
A.
3
3
B.
2
2
C.
6
3
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中E为AB的中点.
(1)求直线A1C1与平面A1B1CD所成角大小;
(2)试确定直线BC1与平面EB1D的位置关系,并证明你的结论;
(3)证明:平面EB1D⊥平面B1CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中直线A1C1与平面A1BD夹角的余弦值是(  )
A.
2
4
B.
2
3
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE.若A′O⊥平面BCDE,则A′D与平面A′BC所成角的正弦值等于(  )
A.
2
3
B.
3
3
C.
2
2
D.
2
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面四边形ABCD的对角线AC,BD交于点O,AC⊥BD,且BA=BC=4,DA=DC=2
3
,∠ABC=60°.现沿对角线AC将三角形DAC翻折,使得平面DAC⊥平面BAC.翻折后:
(Ⅰ)证明:AC⊥BD;
(Ⅱ)记M,N分别为AB,DB的中点.①求二面角N-CM-B大小的余弦值;②求点B到平面CMN的距离.

查看答案和解析>>

同步练习册答案