精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数,且.

1)若是奇函数,求的取值集合

2)当时,设的反函数,且的图象与的图象关于对称,求的取值集合

3)对于问题(1)(2)中的,当时,不等式恒成立,求的取值范围.

【答案】1;(2;(3.

【解析】

1)由求出实数的值,然后检验此时函数为奇函数,由此可得出集合

2)当时,由,解得,可得出,然后解出方程可得出集合

3)原问题转化为恒成立,可得出,由此能求出实数的取值范围.

1)由于函数为奇函数,且定义域为,则

由题意得,整理得,解得.

,则,定义域为,关于原点对称,

此时,函数为奇函数,合乎题意,因此,

2)当时,由,可得,得

,所以,

由于的图象与的图象关于对称,

为方程的实数解,解方程,即

变形得,解得,即,因此,

3)令

原问题转化为上恒成立,

,解得.

因此,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间与极值;

2)当函数有两个极值点时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有两个自习教室,甲、乙、丙名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1)当时,fx)的最小值是_____

2)若f0)是fx)的最小值,则a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右顶点分别为.直线和两条渐近线交于点,点在第一象限且,是双曲线上的任意一点.

(1)求双曲线的标准方程;

(2)是否存在点P使得为直角三角形?若存在,求出点P的个数;

(3)直线与直线分别交于点,证明:以为直径的圆必过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的函数,记的最大值为.若存在,满足,则称一次函数的“逼近函数”,此时的称为上的“逼近确界”.

(1)验证:的“逼近函数”;

(2)已知.若的“逼近函数”,求的值;

(3)已知的逼近确界为,求证:对任意常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前n项和,对任意都有,(其中kbp都是常数).

1)当时,求

2)当时,若,求数列的通项公式;

3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是封闭数列。当时,.试问:是否存在这样的封闭数列.使得对任意.都有,且.若存在,求数列的首项的所有取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域是一切实数的函数,其图像是连续不断的,且存在常数()使得

对任意实数都成立,则称是一个伴随函数.有下列关于伴随函数的结论:

是常数函数中唯一一个伴随函数

②“伴随函数至少有一个零点;

是一个伴随函数

其中正确结论的个数是 ( )

A.1个;B.2个;C.3个;D.0个;

查看答案和解析>>

同步练习册答案