科目:高中数学 来源:2010年北京市海淀区高三第二次模拟考试数学(理) 题型:解答题
(本小题满分14分)
已知函数的图象在
上连续不断,定义:
,
.
其中,表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(Ⅰ)若,
,试写出
,
的表达式;
(Ⅱ)已知函数,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知,函数
是
上的2阶收缩函数,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届广西武鸣高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数).
(Ⅰ)
若,试确定函数
的单调区间;
(Ⅱ) 若函数在其图象上任意一点
处切线的斜率都小于
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高三12月月考理科数学试卷 题型:解答题
已知函数
⑴若,试确定函数
的单调区间;
⑵若,且对于任意
恒成立,试确定实数
的取值范围;
⑶设函数,求证:
。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市黄浦区高三上学期期终基础学业测评理科数学试卷 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数.
(1) 试说明函数的图像是由函数
的图像经过怎样的变换得到的;
(2) (理科)若函数,试判断函数
的奇偶性,并用反证法证明函数
的最小正周期是
;
(3) 求函数的单调区间和值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com