精英家教网 > 高中数学 > 题目详情
(2008•奉贤区模拟)如图所示,南山上原有一条笔直的山路BC,现在又新架设了一条索道AC.小李在山脚B处看索道AC,发现张角∠ABC=120°;从B处攀登400米到达D处,回头看索道AC,发现张角∠ADC=160°;从D处再攀登800米方到达C处.问索道AC长多少(精确到米)?
分析:在△ABC中,由BD=400,∠ABD=120°,可得∠ADB=20°,∠DAB=40°,由正弦定理
BD
sin∠DAB
=
AD
sin∠ABD
可求AD,然后在△ADC中,由DC=800,∠ADC=160,结合余弦定理AC2=AD2+DC2-2 AD•DC•cos∠ADC 可求AC
解答:解:在△ABC中,BD=400,∠ABD=120°,
∵∠ADB=20°∴∠DAB=40°
BD
sin∠DAB
=
AD
sin∠ABD
(2分)
400
sin40°
=
AD
sin120°
,得AD≈538.9   (7分)
在△ADC中,DC=800,∠ADC=160°
∴AC2=AD2+DC2-2 AD•DC•cos∠ADC         (9分)
=538.92+8002-2×538.9×800×cos160°
=1740653.8
得AC≈1319(米)                            (14分)
则索道AC长约为1319米.(15分)
点评:本题主要考查了利用正弦定理及余弦定理解决实际问题,其关键是要根据已知把实际问题转化为数学问题,结合数学知识选择合适的定理、公理、公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案