精英家教网 > 高中数学 > 题目详情
2.(2x3-$\frac{1}{x}$)8的展开式中常数项是112.(用数字表示)

分析 利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.

解答 解:(2x3-$\frac{1}{x}$)8的展开式的通项为:Tr+1=C8r(2x38-r(-$\frac{1}{x}$)r=28-r(-1)rC8rx24-4r
令24-4r=0,解得r=6,
则(2x3-$\frac{1}{x}$)8的展开式中常数项是28-6(-1)6C86=112,
故答案为:112.

点评 本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:选择题

已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是( )

A.f(x)=﹣x(x+2) B.f(x)=x(x﹣2)

C.f(x)=﹣x(x﹣2) D.f(x)=x(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=loga(x3-2x)(a>0且a≠1)在区间(-$\sqrt{2}$,-1)内恒有f(x)>0,则f(x)的单调递减区间为(  )
A.(-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}满足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,则Sn的整数部分的所有可能值构成的集合是{0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:函数f(x)=2x2-2(m-2)x+3m-1在(1,2)单调递增
命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{9-m}=1$表示焦点在y轴上的椭圆
若p或q为真,p且q为假,¬p为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的函数,图象关于y轴对称,且在x∈[0,+∞)单调递增.f(-2)=1,那么f(x)≤1的
解集是(  )
A.[-2,2]B.(-1,2)C.[-1,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由下列各组命题构成的新命题“p且q”为真命题的是(  )
A.p:4+4=9,q:7>4B.p:a∈{a,b,c},q:{a}⊆{a,b,c}
C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题$p:\frac{1}{a}>\frac{1}{4}$,命题q:?x∈R,ax2+ax+1>0,则p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是公差不为零的等差数列,满足a6=5,a22+a32=a42+a52,数列{bn}的通项公式为bn=3n-11
(1)求数列{an}的通项公式;
(2)若从数列{an},{bn+4}中按从小到大的顺序取出相同的项构成数列{Cn},直接写出数列{Cn}的通项公式;
(3)记dn=$\frac{b_n}{a_n}$,是否存在正整数m,n(m≠n≠5),使得d5,dm,dn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案