精英家教网 > 高中数学 > 题目详情

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重;当数值小于20.5时,我们说体重较轻;身高大于或等于170的我们说身高较高;身高小于170的我们说身高较矮.

1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图所示,请根据所得信息,完成下列列联表,并判断是否有95%的把握认为男体育特长生的身高对指数有影响;

身高较矮

身高较高

合计

体重较轻

体重较重

合计

2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献率 (保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重

57

58

53

61

66

57

50

66

残差

0.1

0.3

0.9

-1.5

-0.5

②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58kg.请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.

(参考公式)

.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

(参考数据)

.

【答案】1)见解析,没有(2)①见解析,约为0.91

【解析】

1)根据散点图即可完成列联表;套用公式),算出观测值,与3.841作比较,即可得到本题答案;

2)①把分别代入,即可完善下列残差表;然后套用公式,即可得到本题答案;

②由①可知,第八组数据的体重应为58,套用,即可得到本题答案.

1

身高较矮

身高较高

合计

体重较轻

6

15

21

体重较重

6

5

11

合计

12

20

32

由于

因此没有的把握认为男体育特长生的身高对指数有影响.

2)①

编号

1

2

3

4

5

6

7

8

体重

57

58

53

61

66

57

50

66

残差

0.1

0.3

0.9

-1.5

-0.5

-2.3

-0.5

3.5

所以解释变量(身高)对于预报变量(体重)变化的贡献率约为0.91.

②由①可知,第八组数据的体重应为58.

此时

所以重新采集数据后,男体育特长生的身高与体重的线性回归方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了非洲猪瘟疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就一天中一头猪的平均成本与生猪存栏数量之间的关系进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称—伴随直线.

①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;

②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程及的直角坐标方程;

2)设与曲线分别交于异于原点的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C过点M1),两个焦点为A(﹣10),B10),O为坐标原点.

1)求椭圆C的方程;

2)直线l过点A(﹣10),且与椭圆C交于PQ两点,求BPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

(Ⅰ)求函数fx)的单调递增区间;

(Ⅱ)将函数fx)的图象平移后得到函数gx)的图象,求gx)在区间上的最值.

查看答案和解析>>

同步练习册答案