精英家教网 > 高中数学 > 题目详情

【题目】“红灯停,绿灯行”,这是我们每个人都应该也必须遵守的交通规则.凑齐一拨人就过马路﹣﹣不看交通信号灯、随意穿行交叉路口的“中国式过马路”不仅不文明而且存在很大的交通安全隐患.一座城市是否存在“中国式过马路”是衡量这座城市文明程度的重要指标.某调查机构为了了解路人对“中国式过马路”的态度,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

男性

女性

合计

反感

10

不反感

8

合计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此列联表数据判断是否有95%的把握认为反感“中国式过马路”与性别有关?

(2)若从这30人中的女性路人中随机抽取2人参加一项活动,记反感“中国式过马路”的人数为X,求X的分布列及其数学期望.

附:,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

【答案】(1)见解析;(2)见解析

【解析】

(1)补充列联表,计算的观测值,根据结论判断即可;

(2)分别计算X=0,1,2对应的概率,列出X的分布列求出数学期望即可.

(1)列联表补充如下:

男性

女性

合计

反感

10

6

16

不反感

6

8

14

合计

16

14

30

根据列联表中数据由公式计算得:

的观测值=≈1.158<3.841,

故没有95%的把握认为反感“中国式过马路”与性别有关,

(2)X的可能取值为0,1,2,

∴X的分布列是:

X

0

1

2

P

EX=0×+1×+2×

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,2)的直线与椭圆C:交于P,Q两点.

(1)若直线的斜率为k,求k的取值范围;

(2)若以PQ为直径的圆经过点E(1,0),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一般情况下,城市主干道上的车流速度 (单位:千米/小时)是车流密度 (单位:辆/千米)的函数。当主干道上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时。研究表明:当 时,车流速度 是车流密度 的一次函数。
(1)当 时,求函数 的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过主干道上某观测点的车辆数,单位:辆/小时) 可以达到最大?并求出最大值。(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项等比数列{an}中,存在两项am、an使得=4a1 , 且a6=a5+2a4 , 则的最小值是(  )
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆(a>2)的离心率为,斜率为k(k>0)的直线L过点E(0,1)且与椭圆交于C,D两点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线l与x轴相交于点G,且,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

同步练习册答案