精英家教网 > 高中数学 > 题目详情
14.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为A,集合B={x|x-a<0,a∈R}.
(1)求:集合A;
(2)求:A∩B.

分析 (1)根据负数没有算术平方根,对数函数性质求出f(x)定义域A即可;
(2)表示出B中不等式的解集确定出B,根据a的范围分类讨论求出A∩B即可.

解答 解:(1)由题意得:$\left\{\begin{array}{l}{4-x≥0}\\{{3}^{x}-9>0}\end{array}\right.$,即$\left\{\begin{array}{l}{x≤4}\\{{3}^{x}>{3}^{2}}\end{array}\right.$,
解得:2<x≤4,
则A=(2,4];
(2)由B中不等式解得:x<a,a∈R,即B=(-∞,a),
①当a≤2时,A∩B=∅;
②当2<a≤4时,A∩B=(2,a);
③当a>4时,A∩B=(2,4].

点评 此题考查了交集及其运算,以及函数的定义域及其求法,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:
收入x (万元)8.28.610.011.311.9
支出y (万元)6.27.58.08.59.8
根据如表可得回归直线方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此估计,该社区一户收入为20万元家庭年支出为(  )
A.11.4万元B.11.8万元C.15.2万元D.15.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,一个无盖圆台形容器的上、下底面半径分别为1和2,高为$\sqrt{3}$,AD,BC是圆台的两条母线(四边形ABCD是经过轴的截面).一只蚂蚁从A处沿容器侧面(含边沿线)爬到C处,最短路程等于(  )
A.2$\sqrt{5}$B.π+2C.$\frac{π}{3}$+2$\sqrt{3}$D.$\frac{4π}{3}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1-x)=f(1+x),且方程f(x)=2x有两个相等实根;设g(x)=$\frac{1}{3}$x3-x-f(x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)在[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若二次函数f(x)=ax2+(2a2-a)x+1为偶函数,则实数a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有一段“三段论”推理是这样的:对于定义域内可导函数f(x),如果f′(x)>0,那么f(x)在定义域内单调递增;因为函数f(x)=-$\frac{1}{x}$满足在定义域内导数值恒正,所以,f(x)=-$\frac{1}{x}$在定义域内单调递增,以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β,γ都是锐角,且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,则α+β+γ的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校在全校学生中开展物理和化学实验操作大比拼活动,要求参加者物理、化学实验操作都必须参加,若有30名学生参加这次活动,评委老师对这30名学生实验操作按等级评价(只有A,B,C三个等级),结果统计如表:
物理实验等级
学生数
化学实验等接
 A
 A 3 8 3
 B 6 1 2
 C 4 2 1
(Ⅰ)若从这30名参加活动的学生中任取1人,求“物理实验等级为A且化学实验等级为B”的学生被抽取的概率;
(Ⅱ)记实验操作等级A为3分,等级B为2分,等级C为1分,从这30名参加活动的学生中任取1人,其物理和化学实验得分之和为ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设甲、乙两人每次射击命中目标的概率分别为$\frac{3}{4}$和$\frac{4}{5}$,且各次射击相互独立,若按甲、乙、甲、乙的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是$\frac{19}{400}$.

查看答案和解析>>

同步练习册答案