精英家教网 > 高中数学 > 题目详情
已知函数).
(1)求的单调区间;
⑵如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
⑶讨论关于的方程的实根情况.
(1)单调增区间是,单调减区间是;(2);(3)见解析.

试题分析:(1)先由对数函数的定义求出函数的定义域,然后求出函数的导数,结合函数的单调性与导数的关系求解;(2)先写出切点处的切线的斜率,然后根据已知条件得到,则有,结合二次函数在区间上的图像与性质,可得的最小值;(3)根据已知条件构造函数,将方程的实根的情况转化为函数的零点问题.由函数单调性与导数的关系可知,在区间上单调递增,在区间上单调递减,即最大值是,分三种情况进行讨论:当,函数的图象与轴恰有两个交点;当时,函数的图象与轴恰有一个交点;当时,函数的图象与轴无交点.由方程的根与函数零点的关系得解.
试题解析:(1),定义域为


得,;由得,.
∴函数的单调增区间是,单调减区间是.                 2分
(2)由题意,以为切点的切线的斜率满足:

所以恒成立.
又当时,
所以的最小值为.                                7分.
(3)由题意,方程化简得:
.
,则
时,;当时,.
所以在区间上单调递增,在区间上单调递减.
所以处取得极大值即最大值,最大值为
所以当,即时,的图象与轴恰有两个交点,
方程有两个实根;
时,的图象与轴恰有一个交点,
方程有一个实根;
时,的图象与轴无交点,
方程无实根.                     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求函数的极大值和极小值;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ln(x+1)-的零点所在的大致区间是(  )
A.(0,1)B.(1,2)
C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数其中,曲线在点处的切线方程为
(I)确定的值;
(II)设曲线在点处的切线都过点(0,2).证明:当时,
(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中常数).
(1)当时,求的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,使得曲线
在点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)求的单调区间和极值;
(2)当m为何值时,不等式 恒成立?
(3)证明:当时,方程内有唯一实根.
(e为自然对数的底;参考公式:.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,若上的极值点分别为,则的值为( )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数,给出定义:是函数的导函数,的导函数,若方程有实数解,则称点为函数的“拐点”。某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心。若,请你根据这一发现,求:(1)函数的对称中心为__________;(2)=________.

查看答案和解析>>

同步练习册答案