精英家教网 > 高中数学 > 题目详情

【题目】有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1234.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.

1)若逐个不放回地取球,求是奇数的概率;

2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.

【答案】1;(2.

【解析】

1)用列举法可求基本事件的总数和随机事件中的基本事件的总数,利用古典概型的概率公式可求概率.

2)先求出直线与双曲线有公共点时满足的条件,从而得到随机事件中基本事件的个数,再根据古典概型的概率公式可求概率.

解:用表示先后两次取球构成的基本事件.

1)基本事件有:,共12.

是奇数为事件,则事件包含的基本事件有:8个,

.

2)基本事件有16.

直线与双曲线有公共点为事件

因为双曲线的渐近线为,所以,得,则事件包含的基本事件有6个,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点

1)若两点到直线的距离都为,求直线的方程;

2)若两点到直线的距离都为,试根据的取值讨论直线存在的条数,不需写出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:

(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;

(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?

(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.

附:若随机变量服从正态分布,则

参考公式与临界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,,且平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中O中点.

1)求证:平面

2)求凸多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

同步练习册答案