【题目】已知函数.
(1)若函数在处有极值,求的值;
(2)若对于任意的在上单调递增,求的最小值.
【答案】(1)b=-11 (2)
【解析】
解:(1)f′(x)=3x2+2ax+b,
于是,根据题设有,
解得或.
当时,f′(x)=3x2+8x-11,Δ=64+132>0,所以函数有极值点;
当时,f′(x)=3(x-1)2≥0,所以函数无极值点.
所以b=-11.
(2)由题意知f′(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立,
所以F(a)=2xa+3x2+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立.
因为x≥0,
所以F(a)在a∈[-4,+∞)上为单调递增函数或为常数函数,
①当F(a)为常数函数时,F(a)=b≥0;
②当F(a)为增函数时,F(a)min=F(-4)=-8x+3x2+b≥0,
即b≥(-3x2+8x)max对任意x∈[0,2]都成立,
又-3x2+8x=-3(x-)2+≤,
所以当x=时,(-3x2+8x)max=,所以b≥.
所以b的最小值为.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2
(1)点M在线段PC上,PM=tPC,试确定t的值,使PA∥平面MQB;
(2)在(1)的条件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆Γ: =1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= ,求P的坐标;
(2)设P( ),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且 , ,求直线AQ的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 .
(1)若函数 的图象在点 处的切线平行于直线 ,求 的值;
(2)讨论函数 在定义域上的单调性;
(3)若函数 在 上的最小值为 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=2lnx+x2﹣ax. (Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1 , y1),B(x2 , y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知圆C1的参数方程为 (为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为 ,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com