精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,为椭圆
四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为__________.

试题分析:对椭圆进行压缩变换,x=,y=椭圆变为单位圆:x'2+y'2=1,F'(,0)
延长TO交圆O于N,易知直线A1B1斜率为1,TM=MO=ON=1,A1B2=
设T(x′,y′),则TB2=x,y′=x′+1,由割线定理:TB2×TA1=TM×TN,
易知:B1(0,-1)直线B1T方程:
令y′=0,x=2-5,即F横坐标,即原椭圆的离心率e=2-5
故答案:2-5。
点评:解决该试题的关键是对椭圆进行压缩变换,x=,y=,椭圆变为单位圆:x'2+y'2=1,F'(,0).根据题设条件求出直线B1T方程,直线直线B1T与x轴交点的横坐标就是该椭圆的离心率.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线,焦点为,顶点为,点在抛物线上移动,的中点,的中点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为,则双曲线C的离心率为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2分别是双曲线的左、右焦点,A是其右顶点,过F2作x轴的垂线与双曲线的一个交点为P,G是的重心,若,则双曲线的离心率是(  )
A.2B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线方程为, 则以M(4,1)为中点的弦所在直线l的方程是          .   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一条弦被平分,那么这条弦所在的直线方程是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题15分)设抛物线和点,.斜率为的直线与抛物线相交不同的两个点.若点恰好为的中点.
(1)求抛物线的方程,
(2) 抛物线上是否存在异于的点,使得经过点的圆和抛物线处有相同的切线.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案