精英家教网 > 高中数学 > 题目详情
(2013•南通一模)已知实数x∈[1,9],执行如图所示的流程图,则输出的x不小于55的概率为
3
8
3
8
分析:由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于55得到输入值的范围,利用几何概型的概率公式求出输出的x不小于55的概率.
解答:解:设实数x∈[1,9],
经过第一次循环得到x=2x+1,n=2
经过第二循环得到x=2(2x+1)+1,n=3
经过第三次循环得到x=2[2(2x+1)+1]+1,n=3此时输出x
输出的值为8x+7
令8x+7≥55,得x≥6
由几何概型得到输出的x不小于55的概率为=
9-6
9-1
=
3
8

故答案为:
3
8
点评:解决程序框图中的循环结构时,一般采用先根据框图的流程写出前几次循环的结果,根据结果找规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•南通一模)已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于
5
,则该双曲线的标准方程为
x2
5
-
y2
20
=1
x2
5
-
y2
20
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则p是q的
否命题
否命题
.(从“逆命题、否命题、逆否命题、否定”中选一个填空)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)曲线f(x)=
f′(1)
e
ex-f(0)x+
1
2
x2
在点(1,f(1))处的切线方程为
y=ex-
1
2
y=ex-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a5与a7的等比中项为
±4
2
±4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)已知数列{an}满足:a1=2a-2,an+1=aan-1+1 (n∈N*)
(1)若a=-1,求数列{an}的通项公式;
(2)若a=3,试证明:对?n∈N*,an是4的倍数.

查看答案和解析>>

同步练习册答案