精英家教网 > 高中数学 > 题目详情
求下列函数的定义域:
(1)y=8 
1
2x-1

(2)y=
1-(
1
2
)x
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件即可求函数的定义域.
解答: 解:(1)要使函数有意义,则2x-1≠0,解得x≠
1
2
,即函数的定义域为{x|x≠
1
2
}
(2)要使函数有意义,则1-(
1
2
)x≥0
,解得x≥0,
即函数的定义域为[0,+∞).
点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为R的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x)且f(0)=1,则不等式
f(x)
ex
<1的解为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
3
,则tan2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>0,则下列命题正确的是(  )
A、
2a+b
a+2b
a
b
B、
2a+b
a+2b
a
b
C、
2a+b
a+2b
=
b
a
D、
2a+b
a+2b
b
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=50.2,b=0.25,c=log0.25,a,b,c的大小关系为(  )
A、b<a<c
B、b<c<a
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2≥0,则(  )
A、¬p:?x∈R,x2≥0
B、¬p:?x∈R,x2<0
C、¬p:?x∈R,x2≤0
D、¬p:?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4,5,6,7},集合M={2,3,4,5},N={1,4,5,7},则M∩(∁UN)等于(  )
A、{1,7}
B、{2,3}
C、{2,3,6}
D、{1,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
n+l
n
+
n
n+l
=2+2(
1
n
-
1
n+l
).

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤1
x+1≥0
x-y≤1
,则目标函数z=
y
x+2
的取值范围为(  )
A、[-3,3]
B、[-3,-2]
C、[-2,2]
D、[2,3]

查看答案和解析>>

同步练习册答案