精英家教网 > 高中数学 > 题目详情
3.已知椭圆C的中心在坐标原点,离心率为$\frac{1}{2}$,且它的短轴端点恰好是双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)如图,已知直线x=2与椭圆C相交于两点P,Q,点A,B是椭圆C上位于直线PQ两侧的动点,且总满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?若是,请求出此定值.若不是,请说明理由.

分析 (Ⅰ)设椭圆C的方程,利用离心率为$\frac{1}{2}$,且它的短轴端点恰好是双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦点,求出几何量,即可得到椭圆方程;
(Ⅱ)设直线方程代入椭圆方程,确定x1+x2,x1-x2,即可求得斜率.

解答 解:(I)设椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意知,双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦点为$(0,±2\sqrt{3})$,所以可得b=2$\sqrt{3}$;
由$\frac{c}{a}=\frac{1}{2}$,得a=4,
∴椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.…(5分)
(II)由(I)易求得P(2,3),Q(2,-3),
因为∠APQ=∠BPQ,所以直线PA,PB的倾斜角互补,从而直线PA、PB的斜率之和为0,…(7分)
设直线PA的斜率为k,则PB的斜率为-k,直线PA的方程为y-3=k(x-2)
代入椭圆方程,可得(3+4k2)x2+8(3-2k)kx+4(3-2k)2-48=0,
设A(x1,y1),B(x2,y2),可得x1+2=$\frac{8(2k-3)k}{3+4{k}^{2}}$,
同理x2+2=$\frac{8(2k+3)k}{3+4{k}^{2}}$
∴x1+x2=$\frac{16{k}^{2}-12}{3+4{k}^{2}}$,x1-x2=$\frac{-48k}{3+4{k}^{2}}$
∴kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{k({x}_{1}+{x}_{2})-4k}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$
∴直线AB的斜率为定值$\frac{1}{2}$.…(12分)

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2+x-lnx的零点的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)在[-2,2]上是奇函数,在区间[0,2]上是减函数,且f(a-1)<f(2-a),则a的取值范围是$\frac{3}{2}$<a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:y=x+$\sqrt{6}$,圆O:x2+y2=4,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)已知动直线l1(斜率存在)与椭圆E交于P,Q两个不同点,且△OPQ的面积S△OPQ=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点A,B,使得直线NA与NB的斜率之积为定值?若存在,求出A,B的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知M(x0,y0)是椭圆C:$\frac{x^2}{6}+\frac{y^2}{3}=1$上的任一点,从原点O向圆M:${({x-{x_0}})^2}+{({y-{y_0}})^2}=2$作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问B=OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点O,焦点在坐标轴上的椭圆E经过两点$R({-\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{6}}}{2}}),Q({\frac{3}{2},\frac{{\sqrt{2}}}{2}})$.分别过椭圆E的焦点F1、F2的动直线l1,l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4
(1)求椭圆E的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点F(2,0)是椭圆3kx2+y2=1的一个焦点,则实数k的值是$\frac{1}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在长方体ABCD-A1B1C1D1中,二面角D-AB-D1的大小为45°,DC1与平面ABCD所成角的大小为30°,那么异面直线AD1与DC1所成角的余弦值是(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f($-\sqrt{2}$)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案