精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(cx-a)2-2x,a∈R,e为自然对数的底数.
(I)求函数f(x)的单调增区间;
(II)证明:对任意x∈[0,
1
2
)
,恒有1+2x≤e2x
1
1-2x
成立;
(III)当a=0时,设g(n)=
1
n
[f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)],n∈N*
,证明:对ε∈(0,1),当n>
e2-2
ε
时,不等式
e2-3
2
-g(n)<ε
总成立.
(I)f′(x)=2ex(ex-a)-2=2(e2x-aex-1)
令f′(x)>0,解得x>ln
a+
a2+4
2

∴f(x)的单调增区间是(ln
a+
a2+4
2
,+∞)

(II)证明:由(I)知,当x∈(-∞,0)时,h(x)=e2x-2x是减函数;当x∈[0,+∞)时,h(x)=e2x-2x是增函数;
∴h(x)≥h(0)
∴e2x-2x≥1
∴e2x≥2x+1
x∈[0,
1
2
)
时,∴e-2x≥-2x+1>0
e2x
1
1-2x

∴对任意x∈[0,
1
2
)
,恒有1+2x≤e2x
1
1-2x
成立;
(III)证明:当a=0时,得f(x)=e2x-2x
g(n)=
1
n
[f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)]

=
1
n
[(1+e
2
n
+e
4
n
+…+e
2(n-1)
n
)-(
2
n
+
4
n
+…+
2(n-1)
n
)]

=
1
n
e2-1
e
2
n
-1
-1+
1
n

∵ε∈(0,1),∴当n>
e2-2
ε
时,
1
n
∈(0,
1
2
)

由(II)知,1<e
2
n
1
1-
2
n
0<e
2
n
-1≤
2
n-2

1
e
2
n
-1
n
2
-1

e2-1
e
2
n
-1
≥(
n
2
-1)(e2-1)

1
n
e2-1
e
2
n
-1
≥(
1
2
-
1
n
)(e2-1)

1
n
e2-1
e
2
n
-1
-1+
1
n
≥(
1
2
-
1
n
)(e2-1)-1+
1
n

g(n)≥
e2-3
2
-
e2-2
n

e2-3
2
-g(n)≤
e2-2
n

∴当n>
e2-2
ε
时,
e2-2
n
<ε

∴当n>
e2-2
ε
时,不等式
e2-3
2
-g(n)<ε
总成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案