精英家教网 > 高中数学 > 题目详情

【题目】过点的动直线ly轴交于点,过点T且垂直于l的直线与直线相交于点M.

1)求M的轨迹方程;

2)设M位于第一象限,以AM为直径的圆y轴相交于点N,且,求的值.

【答案】124

【解析】

1)动直线l过点,可根据垂直求出直线,从而求出交点M的坐标,从而寻找横纵坐标的关系,求出点M的轨迹方程.2)由题意可知:点N即为圆与y轴的切点,根据,可求出直线AM的斜率,进而求出直线AM的方程,从而求出的值.

解:(1)∵,当时,M的坐标为

时,,∴,∴的方程为

验证当时,也满足

M的坐标满足方程,即M的轨迹方程为

2)作轴于轴于,则

A为抛物线的焦点,∴,故圆y轴相切于点N

,∵,∴,∴直线AM的方程为

联立,消去y整理得,解得(舍),即

A为抛物线的焦点,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11an(nN*n≥2),数列{bn}满足关系式bn(nN*)

(1)求证:数列{bn}为等差数列;

(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点分别为椭圆的左焦点、右顶点和下顶点,的面积为,且椭圆的离心率为.

(1)求椭圆的标准方程;

(2)若点为椭圆上一点,直线与椭圆交于不同的两点,且(点为坐标原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:

1)根据以上提供的信息,完成列联表,并完善等高条形图;

选物理

不选物理

总计

数学成绩优秀

数学成绩不优秀

260

总计

600

1000

2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?

附:

临界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:①为偶函数;②为偶函数;③的最小值为0;④有两个零点.其中真命题的是( ).

A.②④B.①③C.①③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)已知点是曲线上的任意一点,当点到直线的距离最大时,求经过点且与直线平行的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设两点,且,若函数的图象分别在点处的两条切线互相垂直,求的最小值;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:

(2)用表示中的最大值,记,讨论函数零点的个数.

查看答案和解析>>

同步练习册答案