精英家教网 > 高中数学 > 题目详情

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…对每个正整数n,点Pn位于函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

(1)求点Pn的坐标;

(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn且过点Dn(0,n2+1),记过点Dn且与抛物线Cn只有一个交点的直线的斜率为kn,求证:

(3)设,等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求{an}的通项公式.

答案:
解析:

  答案:(1)∵Pn的横坐标构成以为首项,-1为公差的等差数列{xn}

  ∴

  ∵位于函数的图象上

  ∴

  ∴点Pn的坐标为

  (2)据题意可设抛物线Cn的方程为:

  即

  ∵抛物线Cn过点Dn(0,n2+1)

  ∴

  ∴

  ∵过点Dn且与抛物线Cn只有一个交点的直线即为以Dn为切点的切线

  ∴

  ∴(n≥2)

  ∴

  

  ∴

  (3)∵

  ∴S∩T中的元素即为两个等差数列{-2n-3}与{-12n-5}中的公共项,它们组成以-17为首项,以-12为公差的等差数列

  ∵,且{an}成等差数列,a1是S∩T中的最大数

  ∴a1=-17,其公差为

  1°当k=1时,

  此时∴不满足题意,舍去

  2°当k=2时,

  此时

  3°当k=3时,

  此时∴不满足题意,舍去

  4°k>3时,不满足题意.

  综上所述所求通项为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年聊城市四模理) (14分)  在直角坐标平面上有一点列位于直线上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

   (1)求点Pn的坐标;

   (2)设抛物线列C1C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1). 记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:

   (3)设,等差数列{an}的任意一项,其中a1ST中的最大数,且-256<a10­<-125,求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源:2011届江苏省苏州市红心中学高三摸底考试数学卷 题型:解答题

(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
(3)等差数列的任一项,其中中的最大数,,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市高三摸底考试数学卷 题型:解答题

(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

(1)求点Pn的坐标;

(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求

(3)设等差数列的任一项,其中中的最大数,,求数列的通项公式.

 

查看答案和解析>>

科目:高中数学 来源:2009-2010集宁一中学高三年级理科数学第一学期期末考试试题 题型:解答题

在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,­为公差的等差数列

⑴求点的坐标;

⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与数列相切于的直线的斜率为,求:

⑶设,等差数列的任一项,其中中的最大数,,求的通项公式。

 

查看答案和解析>>

同步练习册答案