精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的上、下焦点分别为,离心率为,点 在椭圆C上,延长交椭圆于N点.

1)求椭圆C的方程;

2PQ为椭圆上的点,记线段MNPQ的中点分别为ABAB异于原点O),且直线AB过原点O,求面积的最大值.

【答案】(1);(2)最大值为3

【解析】

1)利用待定系数法以及椭圆的离心率即可求解.

2)由(1)可知,可求,与椭圆联立,设,根据设而不求的思想求出,设直线

与椭圆方程联立,由弦长公式以及点到直线的距离公式求出面积表达式,借助基本不等式即可求出.

(1)依题意,

解得,故椭圆C的方程为

2)由(1)可知,,故直线

,则,两式相减得

因为PQ不过原点,所以,即

同理:

又因为直线AB过原点O,所以,所以

设直线

,得

由韦达定理得,

所以,

又因为到直线PQ的距离

所以

当且仅当,即时等号成立,

所以面积的最大值为3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中(图1),为线段上的点,且.为折线,把翻折,得到如图2所示的图形,的中点,且,连接.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若四面体ABCD的三组对棱分别相等,即,给出下列结论:

①四面体ABCD每组对棱相互垂直;

②四面体ABCD每个面的面积相等;

③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于而小于

④连接四面体ABCD每组对棱中点的线段相互垂直平分;

⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.

其中正确结论的序号是(

A.②④⑤B.①②④⑤C.①③④D.②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这第一产品期间第天的利润(单位:万元,),记第天的利润率,例如.

1)求的值;

2)求第天的利润率

3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国数学家布丰提出一种计算圆周率的方法——随机投针法,受其启发,我们设计如下实验来估计的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对;再统计两数的平方和小于1的数对的个数;最后再根据统计数来估计的值.已知某同学一次试验统计出,则其试验估计______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线过点,且与抛物线交于两点,

1)求的取值范围;

2)若,点的坐标为,直线与抛物线的另一个交点为,直线与抛物线的另一个交点为,直线轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】业界称中国芯迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为AA为常数)元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,.已知3年后总投入资金为研发启动是投入资金的3倍,问:

1)研发启动多少年后,总投入资金是研发启动时投入资金的8倍;

2)研发启动后第几年投入的资金最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系上,有一点列,设点的坐标),其中 ,且满足).

1)已知点,点满足,求的坐标;

2)已知点),且)是递增数列,点在直线上,求

3)若点的坐标为,求的最大值.

查看答案和解析>>

同步练习册答案