精英家教网 > 高中数学 > 题目详情
精英家教网f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)

(1)在直角坐标系中画出f(x)的图象;
(2)求f[f (-
3
2
)]的值;
(3)若f (x)=3,求x值.
分析:(1)建立直角坐标系,分别根据每段的解析式画出图象;
(2)根据每段的解析式,分别代入,即可求得f[f (-
3
2
)]的值;
(3)对x进行分类讨论,依次列出方程求解,即可求得x的值.
解答:解:(1)作出图象如图所示;精英家教网
(2)∵-
3
2
<-1,
∴f(-
3
2
)=-
3
2
+2=
1
2

∴f[f (-
3
2
)]=f(
1
2
)=(
1
2
2=
1
4

故f[f (-
3
2
)]的值为
1
4

(3)∵f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)

①当x≤-1时,f(x)=x+2=3,解得x=1,不符合题意;
②当-1<x<2时,f(x)=x2=3,解得x=±
3

∵-1<x<2,则x=
3

③当x≥2时,f(x)=2x=3,解得x=
3
2
,不符合题意;
综合①②③,可得x=
3
点评:本题考查了分段函数的解析式及其图象的作法,考查了分段函数的取值问题,分段函数的零点问题.对于分段函数一般选用数形结合和分类讨论的数学思想进行解题.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)

(1)在下列直角坐标系中画出f(x)的图象;
(2)若f(t)=3,求t值.

查看答案和解析>>

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案