精英家教网 > 高中数学 > 题目详情
9.己知集合A={x|8+2x-x2≥0},B={x||x|<m},A∩B=B,则m的取值范围是(-∞,2].

分析 求出集合A,集合B,利用A∩B=B,列出不等式求解即可.

解答 解:集合A={x|8+2x-x2≥0}={x|-2≤x≤4},
B={x||x|<m}={x|-m<x<m},
A∩B=B,
可得$\left\{\begin{array}{l}-2≤-m\\ m≤4\end{array}\right.$,
解得m≤2.
故答案为:(-∞,2].

点评 本题考查不等式的解法,集合的包含故选的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知tanx=$\frac{1}{2}$,则sin2($\frac{π}{4}$+x)=(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin200°=a,则tan160°等于(  )
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,}&{x>0}\\{a,}&{x=0}\\{g(2x),}&{x<0}\end{array}\right.$为奇函数,则a=0,f(g(-2))=-25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(5)和f(2003)的值分别为(  )
A.0和2001B.1和$\frac{2001}{2}$C.$\frac{5}{2}$和$\frac{2003}{2}$D.5和2003

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)满足f(x+2)=f(x),当x∈[0,1]时.,f(x)=x,则当x∈[k,k+1](k∈Z)时,函数f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论:①(cosx)′=sinx;②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;③若y=$\frac{1}{{x}^{2}}$,则y′|x=3=-$\frac{2}{27}$;④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=x2-2bx+c的最小值为3,它的图象过点M(2,4),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,若a1+a4+a7=45,a2+a5+a8=39,则a4+a7+a10=87.

查看答案和解析>>

同步练习册答案