精英家教网 > 高中数学 > 题目详情
16.下列表述中错误的是(  )
A.归纳推理是由特殊到一般的推理B.演绎推理是由一般到特殊的推理
C.类比推理是由特殊到一般的推理D.类比推理是由特殊到特殊的推理

分析 利用归纳推理就是从个别性知识推出一般性结论的推理,类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,即得结论.

解答 解:所谓归纳推理,就是从个别性知识推出一般性结论的推理.类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.
故选:C.

点评 本题解决的关键是了解归纳推理、演绎推理和类比推理的概念及它们间的区别与联系.判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若集合A={x|x2+x-6=0},B={x2+x+a=0},且A∩B=B,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个空间几何体的三视图如图所示,根据图中数据:
(1)画出该几何体的直观图;
(2)求该几何体的表面积;
(3)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.运行如图的程序,若x=1,则输出的y等于(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若曲线x2-4x+y2-2y+4=0(y≥1)与直线y=k(x+1)有2个公共点,则k的取值范围是(  )
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A;
(2)若b+c=4,求△ABC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到它的渐近线距离为$\sqrt{3}$,直线x=-$\frac{{a}^{2}}{c}$(c为半焦距)与抛物线y2=2x的准线重合,则该双曲线的离心率为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设各项均为正数的数列{an}满足$\frac{S_n}{a_n}$=pn+r(p,r为常数),其中Sn为数列{an}的前n项和.
(1)若p=1,r=0,求证:{an}是等差数列;
(2)若p=$\frac{1}{3}$,a1=2,求数列{an}的通项公式;
(3)若a2015=2015a1,求p•r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的最大值和最小值,并求出取得最值时自变量x的值.
(1)y=-$\frac{1}{2}$cos3x+$\frac{3}{2}$;
(2)y=3sin(2x+$\frac{π}{6}$)+1.

查看答案和解析>>

同步练习册答案