精英家教网 > 高中数学 > 题目详情
3.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,G是EF的中点,AG=1
(1)证明:AG⊥平面ABCD;
(2)求直线BF与平面ACE所成角的正弦值;
(3)判断线段AC上是否存在一点M,使MG∥平面ABF?若存在,求出$\frac{AM}{AC}$的值;若不存在,说明理由.

分析 (1)根据等腰三角形AG⊥EF.推证 AG⊥AD,AG⊥平面ABCD,线面的转化 AG⊥CD.
(2)以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,建立空间直角坐标系,可求平面ACE的法向量为$\overrightarrow{n}$=(1,-1,1).即可求解BF与平面ACE所成角的正弦值为|cos<$\overrightarrow{BF}$,$\overrightarrow{n}$>|=$\frac{|\overrightarrow{BF}•\overrightarrow{n}|}{|\overrightarrow{BF}||\overrightarrow{n}|}$=$\frac{\sqrt{6}}{9}$.
(3)根据中点推证GF∥MN,GF=MN.四边形GFNM是平行四边形. 由直线平面平行的判定定理推证GM∥平面ABF;

解答 解:(1)证明:因为AE=AF,点G是EF的中点,
所以AG⊥EF.(1分)
又因为EF∥AD,
所以AG⊥AD.(2分)
因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
AG?平面ADEF,
所以AG⊥平面ABCD.(4分)
(2)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.
以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系
则A(0,0,0),B(4,0,0),C(4,4,0),
由于AG=1,则E(0,1,1),F(0,-1,1),
所以$\overrightarrow{BF}$=(-4,-1,1),$\overrightarrow{AC}$=(4,4,0),$\overrightarrow{AE}$=(0,1,1).…(8分)
设平面ACE的法向量为$\overrightarrow{n}$=(x,y,z),
由$\overrightarrow{AC}•\overrightarrow{n}$=0,$\overrightarrow{AE}•\overrightarrow{n}$=0,得$\left\{\begin{array}{l}{4x+4y=0}\\{y+z=0}\end{array}\right.$,
令z=1,得$\overrightarrow{n}$=(1,-1,1).
因为BF与平面ACE所成角的正弦值为|cos<$\overrightarrow{BF}$,$\overrightarrow{n}$>|=$\frac{|\overrightarrow{BF}•\overrightarrow{n}|}{|\overrightarrow{BF}||\overrightarrow{n}|}$=$\frac{\sqrt{6}}{9}$,
所以直线BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$.…(10分)
(3)存在点M在线段AC上,且 $\frac{AM}{MC}=\frac{1}{3}$,使得:GM∥平面ABF.
证明:如图,过点M作MN∥BC,且交AB于点N,连结NF,
因为 $\frac{AM}{MC}=\frac{1}{3}$,所以$\frac{MN}{BC}=\frac{AM}{AC}=\frac{1}{4}$,
因为 BC=2EF,点G是EF的中点,
所以 BC=4GF,
又因为 EF∥AD,四边形ABCD为正方形,
所以 GF∥MN,GF=MN.
所以四边形GFNM是平行四边形.
所以 GM∥FN.
又因为GM?平面ABF,FN?平面ABF,
所以 GM∥平面ABF.

点评 本题考查了空间几何体的性质,空间直线的位置关系,直线平面的平行关系,掌握好定理,转化直线的为关系判断即可,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知圆的极坐标方程为:ρ2-4$\sqrt{2}$$ρcos(θ+\frac{π}{4})$+6=0,若点P(x,y)在圆上,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,且A,B两点都在y轴的右侧,设P为椭圆上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)函数$f(x)=\frac{9}{{{x^2}+1}}+\frac{4}{{4-{x^2}}}$(-2<x<2)的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若0<x<y<1,0<a<1,则下列不等式正确的是(  )
A.3logax<logay2B.cosax<cosayC.ax<ayD.xa<ya

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,顶点A(-2,1),点B在直线l:x+y-3=0上,点C在x轴上,则△ABC周长的最小值2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知N(1,0),动点M满足$k+{(\overrightarrow{OM})^2}=1+K{(\overrightarrow{OM}•\overrightarrow{ON})^2}$,k∈R,其中O是坐标原点,
(1)求动点M的轨迹方程,并判断曲线类型;
(2)如果动点M的轨迹是一条圆锥曲线,其离心率e满足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p,q满足p+2q-1=0,则直线px+3y+q=0必过定点(  )
A.$(-\frac{1}{6},\frac{1}{2})$B.$(\frac{1}{2},\frac{1}{6})$C.$(\frac{1}{2},-\frac{1}{6})$D.$(\frac{1}{6},-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应是从集合S到T的映射的是(  )
A.S=N,T={-1,1},对应法则是n→(-1)n,n∈S
B.S={x|x∈R},T={y|y∈R},对应法则是x→y=$\frac{1+x}{1-x}$
C.S={0,1,2,5},T={1,$\frac{1}{2}$,$\frac{1}{5}$},对应法则是取倒数
D.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方.

查看答案和解析>>

同步练习册答案