【题目】已知点、,动点满足,设动点的轨迹为曲线,将曲线上所有点的纵坐标变为原来的一半,横坐标不变,得到曲线.
(1)求曲线的方程;
(2)是曲线上两点,且, 为坐标原点,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】如图所示,在中, 的中点为,且,点在的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线的方程;
(Ⅱ)设动直线交曲线于两点,且以为直径的圆经过点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,半径为的圆与相切,圆心在轴上且在直线的上方.
(Ⅰ)求圆的标准方程;
(Ⅱ)过点的直线与圆交于两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中,在其定义域内既是奇函数又是减函数的是( )
·(1)y=﹣|x|(x∈R)(2)y=﹣x3﹣x(x∈R)(3)y=( )x(x∈R)(4)y=﹣x+ .
A.(2)
B.(1)(3)
C.(4)
D.(2)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a1=3,an=2an﹣1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*)
(1)t=0,m=0时,求证: 是等差数列;
(2)t=﹣1,m= 是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位有老年人30人,中年人90人,青年人60人,为了调查他们的身体健康状况,采用分层抽样的方法从他们中间抽取一个容量为36的样本,则应抽取老年人的人数是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com