精英家教网 > 高中数学 > 题目详情
已知数列{an}满足递推关系式an=2an﹣1+1,(n≥2)其中a4=15
(1)求a1,a2,a3
(2)求数列{an}的通项公式
(3)求数列{an}的前n项和S.

解:(1)由an=2an-1+1,(n≥2)其中a4=15 ,
可知a4=2a3+1,解得a3=7,
同理可得,a2=3,a1=1.
(2)由an=2an-1+1,(n≥2)可知an+1=2an-1+2,(n≥2),
∴数列{an+1}是以a1+1为首项,2为公比的等比数列,
∴an+1=(a1+1)·2n﹣1=2n
所以an=2n﹣1.
(3)∵an=2n-1.
∴Sn=a1+a2+a3+…+an=(21-1)+(22-1)+…+(2n-1)
=(21+22+…+2n)-n

=2n+1-n-2.

练习册系列答案
  • 名师面对面小考满分策略系列答案
  • 教材全解字词句篇系列答案
  • 课时练全优达标测试卷系列答案
  • 万唯中考试题研究系列答案
  • 1课3练世界图书出版公司系列答案
  • 学生用书系列答案
  • 全优训练系列答案
  • 语文阅读阶梯训练系列答案
  • 巴蜀英才课课练与单元测试系列答案
  • 听力特训营系列答案
  • 年级 高中课程 年级 初中课程
    高一 高一免费课程推荐! 初一 初一免费课程推荐!
    高二 高二免费课程推荐! 初二 初二免费课程推荐!
    高三 高三免费课程推荐! 初三 初三免费课程推荐!
    相关习题

    科目:高中数学 来源: 题型:

    已知数列{an}满足:a1=1且an+1=
    3+4an
    12-4an
    , n∈N*

    (1)若数列{bn}满足:bn=
    1
    an-
    1
    2
    (n∈N*)
    ,试证明数列bn-1是等比数列;
    (2)求数列{anbn}的前n项和Sn
    (3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    已知数列{an}满足
    1
    2
    a1+
    1
    22
    a2+
    1
    23
    a3+…+
    1
    2n
    an=2n+1
    则{an}的通项公式
     

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    已知数列{an}满足:a1=
    3
    2
    ,且an=
    3nan-1
    2an-1+n-1
    (n≥2,n∈N*).
    (1)求数列{an}的通项公式;
    (2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    已知数列{an}满足an+1=|an-1|(n∈N*
    (1)若a1=
    54
    ,求an
    (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
    2n-1
    2n-1

    查看答案和解析>>

    同步练习册答案