精英家教网 > 高中数学 > 题目详情

已知抛物线和直线没有公共点(其中为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为,且直线恒过点.
(1)求抛物线的方程;
(2)已知点为原点,连结交抛物线两点,
证明:

解:(1)如图,设
,得   ∴的斜率为
的方程为   同理得
代入上式得
满足方程
的方程为    ………………4分
上式可化为,过交点
过交点, ∴
的方程为              ………………6分
(2)要证,即证

 ……(1)

直线方程为
联立化简
 ……①    ……②    
把①②代入(Ⅰ)式中,则分子

   …………(2)
点在直线上,∴代入Ⅱ中得:                          
    
故得证                            

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,
离心率等于.直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 椭圆C的右焦点是否可以为的垂心?若可以,求出直线的方程;
若不可以,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在极坐标系中,以极点为坐标原点,极轴为x轴正半轴,建立直角坐标系,点M(2,)的直角坐标是(  )

A.(2,1) B.(,1) C.(1,D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(18分)已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线(m为常数)对称?若存在,求出满足的条件;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知:椭圆的左右焦点为;直线经过交椭圆于两点.
(1)求证:的周长为定值.
(2)求的面积的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设分别是椭圆的左、右焦点,是该椭圆上一个动点,且
、求椭圆的方程;
、求出以点为中点的弦所在的直线方程。

查看答案和解析>>

同步练习册答案