精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinA:sinB:sinC=6:5:4,则cosA=
1
8
1
8
分析:出三边分别为 6k、5k、4k,由余弦定理可得cosA=
b2+c2-a2
2bc
,运算求得结果.
解答:解:在△ABC中,已知sinA:sinB:sinC=6:5:4,设三边分别为 6k、5k、4k,由余弦定理可得
cosA=
b2+c2-a2
2bc
=
25+16-36
2×5×4
=
1
8
,故答案为:
1
8
点评:本题考查正弦定理、余弦定理的应用,设出三边分别为 6k、5k、4k,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,则
AB
AC
的值为(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,则B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P为线段AB上的一点,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,则
1
x
+
1
y
的最小值为
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知SABC(a2+b2),求ABC

查看答案和解析>>

同步练习册答案