精英家教网 > 高中数学 > 题目详情

【题目】已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒成立.则实数m( )

A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

【答案】A

【解析】

f(x)导数,利用导数的几何意义可得a和b的值,求g(x)的导数和单调性,可得函数g(x)的最值,然后解不等式即可得m的最值.

,∴

,又点在直线上,

∴-1=2 +b+,∴b=﹣1,

∴g(x)=ex﹣x2+2,g'(x)=ex﹣2x,g'(x)=ex﹣2,

当x[1,2]时,g'(x)≥g'(1)=e﹣2>0,

∴g'(x)在[1,2]上单调递增,

∴g'(x)≥g(1)=e﹣2>0,∴g(x)在[1,2]上单调递增,

解得或e≤m≤e+1,

∴m的最大值为e+1,无最小值,

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)和圆分别是椭圆的左、右两焦点,过且倾斜角为)的动直线交椭圆两点,交圆两点(如图所示,点轴上方).当时,弦的长为.

(1)求圆与椭圆的方程;

(2)若依次成等差数列,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形ABCD沿PD、PC翻折至A、B两点重合,其中P是AB中点,在折成的三棱锥A(B)-PDC中,点Q在平面PDC内运动,且直线AQ与棱AP所成角为60,则点Q运动的轨迹是

A. B. 椭圆 C. 双曲线 D. 抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面是正方形,分别是的中点.

(1)求证

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时下,租车已经成为新一代的流行词,租车自驾游也慢慢流行起来,某小车租车点的收费标准是,不超过2天按照300元计算;超过两天的部分每天收费标准为100元(不足1天的部分按1天计算).有甲乙两人相互独立来该租车点租车自驾游(各租一车一次),设甲、乙不超过2天还车的概率分别为;2天以上且不超过3天还车的概率分别;两人租车时间都不会超过4天.

(1)求甲所付租车费用大于乙所付租车费用的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求曲线在点处的切线方程;

2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.

1)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率;

2)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取.假设某考生在省会考六科的成绩,考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,对于区间,若满足,则称区间为函数区间.

1)证明:区间是函数区间;

2)若区间是函数区间,求实数的取值范围;

3)已知函数在区间上的图象连续不断,且在上仅有个零点,证明:区间不是函数区间.

查看答案和解析>>

同步练习册答案