精英家教网 > 高中数学 > 题目详情
13.设向量$\overrightarrow{a}$=(1,1),i是虚数单位,复数(m-i)•i所对应的向量为$\overrightarrow{b}$,若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m的值等于(  )
A.1B.-1C.0D.±1

分析 复数(m-i)•i=1+mi所对应的向量为$\overrightarrow{b}$=(1,m),根据$\overrightarrow{a}⊥\overrightarrow{b}$,可得$\overrightarrow{a}•\overrightarrow{b}$=0,解出即可.

解答 解:复数(m-i)•i=1+mi所对应的向量为$\overrightarrow{b}$=(1,m),
∵$\overrightarrow{a}⊥\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=1+m=0,
解得m=-1.
故选:B.

点评 本题考查了复数的运算法则、复数的几何意义、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知i为虚数单位,则$\frac{1+i}{{{{(1-i)}^2}}}$=$-\frac{1}{2}+\frac{1}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设有一组圆Ck:(x-k)2+(y-k)2=4,(k∈R),下命题正确的是①②③⑤(写出所有正确结论编号).
①不论k如何变化,圆心Ck始终在一条直线上;
②所有圆Ck均不经过点(3,0);
③存在一条定直线始终与圆Ck相切;
④当k=0时,若圆Ck上至少有一点到直线x+y+m=0的距离为1,则m的取值范围为(3$\sqrt{2}$,+∞);
⑤若k$∈(\frac{\sqrt{2}}{2},\frac{3\sqrt{2}}{2})$,若圆Ck上总存在两点到原点的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx+cos(x-$\frac{π}{6}$),x∈R
(Ⅰ)求f(x)的值域;
(Ⅱ)设△ABC的内角A、B、C的对边长分别为a、b、c,且a、c是方程t2-4t+2=0的两根,若角B是函数f(x)取最大值时的最小正角,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\frac{2\sqrt{3}sin(x+\frac{π}{3})+6{x}^{2}+\sqrt{3}x}{6{x}^{2}+3cosx}$的最大值为M,最小值为N,则(  )
A.M-N=4B.M+N=4C.M-N=2D.M+N=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.M={x|ax2+bx+1>0},N={x|x2+bx+a<0},若M⊆N,则a、b间的关系是a≠0,且b2-4a≤0或a<0,且b2-4a>0,且$\left\{\begin{array}{l}{b(1-a)≥(a+1)\sqrt{{b}^{2}-4a}}\\{b(1-a)≤-(a+1)\sqrt{{b}^{2}-4a}}\end{array}\right.$,.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\sqrt{4-|x|}$的定义域是[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.log23•log34…log3132=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式xy>x+z对任意x∈(0,+∞),y∈(1,+∞)恒成立,则实数z的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.[0,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案