(14分)设A(),B()是椭圆的两点, ,,且,椭圆的离心率,短轴长为2,O为坐标原点。
(1)求椭圆方程;
(2)若存在斜率为的直线AB过椭圆的焦点F()(为半焦距),求的值;
(3)试问AOB的面积是否为定值?若是,求出该定值;若不是,说明理由。
解: (1);(2);(3),说明面积为定值。
【解析】本试题主要是考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。
(1)利用椭圆的离心率,短轴长为2,可以得到a,b,c的关系式,进而求解得到椭圆的方程。
(2)利用直线与椭圆的方程联立方程组结合韦达定理和向量的数量积为零,得到k的值
(3)设直线返程与椭圆联立,借助于向量的数量积关系式,进而确定三角形的面积为定值。
解: (1)
(2)设直线AB: 联立方程组与然后得到关于x的一元二次方程
因为,那么利用向量的坐标关系得到
(3)设直线AB: 联立方程组与然后得到关于x的一元二次方程
因为,那么利用向量的坐标关系得到
AOB的面积,说明面积为定值。
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
2 |
4 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
9y2 |
8 |
|
2 |
3 |
x2 |
a2 |
y2 |
b2 |
2 |
3 |
r1 |
r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
2 |
x2 |
4 |
y2 |
3 |
查看答案和解析>>
科目:高中数学 来源:2013届海南省高二上学期期末文科数学试题(解析版) 题型:解答题
(本小题满分12分)已知A,B两点是椭圆 与坐标轴正半轴的两个交点.
(1)设为参数,求椭圆的参数方程;
(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com