精英家教网 > 高中数学 > 题目详情

设P是椭圆上一点,F1、F2是椭圆的两个焦点,则∠F1PF2=90°,则△F1PF2的面积是

[  ]

A.16

B.8

C.4

D.2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过原点O斜率为1的直线l与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1•k2是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,P是椭圆上一点,且∠F1PF2=60°,设
|PF1|
|PF2|

(1)求椭圆C的离心率e和λ的函数关系式e=f(λ)
(2)若椭圆C的离心率e最小,且椭圆C上的动点M到定点N(0,
1
2
)
的最远距离为
5
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆上的一点,F是椭圆的左焦点,且,则点P到该椭圆左准线的距离为       (   )            

A.                                   B.3

C.4                                    D.6 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过原点O斜率为1的直线l与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1•k2是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(文科)(解析版) 题型:解答题

设椭圆C:=1(a>b>0)的离心率为,过原点O斜率为1的直线l与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1•k2是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案