精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\ kx+1,x<0\end{array}$,且0<a<1,k≠0,若函数g(x)=f(x)-k有两个零点,则实数k的取值范围为(0,1).

分析 画出分段函数的图象,数形结合得答案.

解答 解:由分段函数f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\ kx+1,x<0\end{array}$,
由y=f(x)-k=0,
得f(x)=k.
令y=k与y=f(x),
作出函数y=k与y=f(x)的图象如图:
由图可知,函数y=f(x)-k有且只有两个零点,
则实数k的取值范围是(0,1).
故答案为:(0,1).

点评 本题考查分段函数的应用,考查函数零点的判断,体现了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.给出程序框图如图所示,若输入n=20,则输出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一海豚在水池中(不考虑水的深度)自由游戏,已知水池的长为30m,宽为20m,则海豚嘴尖离池边超过4m的概率为$\frac{11}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足条件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,则z=2x+y+3的最大值是(  )
A.3B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C1:(x-1)2+y2=$\frac{1}{2}$与圆C2的公切线是直线y=x和y=-x,且两圆的圆心距是3,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知扇形半径为4cm,弧长为12cm,则扇形面积是24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线y=x+b与曲线x=$\sqrt{1-{y^2}}$有且仅有一个公共点,则b的取值范围是(  )
A.|b|=$\sqrt{2}$B.-1<b≤1或b=-$\sqrt{2}$C.-1≤b≤$\sqrt{2}$D.0<b≤1或b=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.P为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点,F1,F2分别是椭圆的左焦点和右焦点,过P点作PH⊥F1F2于H,若PF1⊥PF2,则|PH|=(  )
A.$\frac{25}{4}$B.$\frac{8}{3}$C.8D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{OA}=\overrightarrow{e_1},\overrightarrow{OB}=\overrightarrow{e_2}$,若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,且$\overrightarrow{AP}=6\overrightarrow{PB}$,则$\overrightarrow{OP}$=(  )
A.$\frac{1}{7}\overrightarrow{e_1}-\frac{6}{7}\overrightarrow{e_2}$B.$\frac{6}{7}\overrightarrow{e_1}-\frac{1}{7}\overrightarrow{e_2}$C.$\frac{1}{7}\overrightarrow{e_1}+\frac{6}{7}\overrightarrow{e_2}$D.$\frac{6}{7}\overrightarrow{e_1}+\frac{1}{7}\overrightarrow{e_2}$

查看答案和解析>>

同步练习册答案