精英家教网 > 高中数学 > 题目详情

【题目】某工厂在两个车间内选取了12个产品,它们的某项指标分布数据的茎叶图如图所示,该项指标不超过19的为合格产品.

(1)从选取的产品中在两个车间分别随机抽取2个产品,求两车间都至少抽到一个合格产品的概率;

(2)若从车间选取的产品中随机抽取2个产品,用表示车间内产品的个数,求的分布列与数学期望.

【答案】(1)(2)见解析

【解析】

(1)利用茎叶图,求出两个车间的产品数,然后求解概率.(2)写出X的所有可能取值并求出取每个值时对应的概率,得到分布列,然后求解期望即可.

(1)由茎叶图知,车间内合格的产品数为4,车间内合格的产品数为2,

则所求概率.

(2)由题意知,的所有可能取值为0,1,2.

所以的分布列为

0

1

2

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值.

2)是否存在实数,使得函数上的最小值为0?若存在,试求出的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲在平面四边形ABCD中已知∠A=45°C=90°ADC=105°,AB=BD现将四边形ABCD沿BD折起使平ABD⊥平面BDC(如图乙)设点E、F分别为棱AC、AD的中点.

(1)求证:DC⊥平面ABC;

(2)求BF与平面ABC所成角的正弦值;

(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注的数字模糊不清.

1)试根据频率分布直方图求的值,并估计该公司职员早餐日平均费用的众数;

2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用多于8元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.已知幂函数上单调递减则

B.函数的有两个零点,一个大于0,一个小于0的一个充分不必要条件是

C.已知函数,若,则的取值范围为

D.已知函数满足,且的图像的交点为的值为8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费(单位:万元)对年销量(单位:吨)和年利润(单位:万元)的影响对近6年宣传费和年销量的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,两边取对数,即,令,即对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

1)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于21吨的概率.

2)根据所给数据,求关于的回归方程;

3)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入108万元宣传费,你认为该决策合理吗?请说明理由.(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,当输入的的值为4时,输出的的值为2,则空白判断框中的条件可能为( ).

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形.点C是椭圆的下顶点,经过椭圆中心O的一条直线与椭圆交于AB两个点(不与点C重合),直线CACB分别与x轴交于点DE

1)求椭圆的标准方程.

2)判断的大小是否为定值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案