精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}中,a5=9,a7=13,等比数列{bn}的通项公式bn=2n1 , n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an+bn}的前n项和Sn

【答案】(Ⅰ)解:由题知 , 解得a1=1,d=2,
∴an=2n﹣1,n∈N*,
(Ⅱ)解:由(I)知,an+bn=(2n﹣1)+2n1
由于{an}的前n项和为 =n2

∴{bn}是以1为首项,以2为公比的等比数列,
∴数列{bn}的前n项和为 =2n﹣1,
∴{an+bn}的前n项和Sn=n2+2n﹣1
【解析】(Ⅰ)设等差数列{an}的公差为d,运用等差数列的通项公式列方程组,解方程组可得首项和公差,进而得到所求通项公式;(Ⅱ)分组求和,结合等差数列和等比数列的求和公式即可得到所求和.
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)求的定义域

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条宽为的两平行河岸有村庄和供电站,村庄的直线距离都是与河岸垂直,垂足为现要修建电缆,从供电站向村庄供电.修建地下电缆、水下电缆的费用分别是万元万元.

(1) 如图①,已知村庄原来铺设有电缆,现先从处修建最短水下电缆到达对岸后后,再修建地下电缆接入原电缆供电,试求该方案总施工费用的最小值;

(2) 如图②,点在线段上,且铺设电缆的线路为.若,试用表示出总施工费用(万元)的解析式,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)满足: ,当x∈(﹣1,0)时,有f(x)>0,且 .设 ,则实数m与﹣1的大小关系为(
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga ,(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)是否存在实数m使得f(x+2)+f(m﹣x)为常数?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数.

(1)求证:

(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(log4x)>2的x的取值集合.

查看答案和解析>>

同步练习册答案