精英家教网 > 高中数学 > 题目详情
如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴(含坐标原点上滑动,则
OB
OC
的最大值为(  )
分析:令∠OAD=θ,由边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上,可得出B,C的坐标,由此可以表示出两个向量,算出它们的内积即可
解答:解:如图令∠OAD=θ,由于AD=1故0A=cosθ,OD=sinθ,
如图∠BAX=
π
2
-θ,AB=1,故xB=cosθ+cos(
π
2
-θ)=cosθ+sinθ,yB=sin(
π
2
-θ)=cosθ
OB
=(cosθ+sinθ,cosθ)
同理可求得C(sinθ,cosθ+sinθ),即
OC
=(sinθ,cosθ+sinθ),
OB
OC
=(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=1+sin2θ,
OB
OC
的最大值是2
故选D.
点评:本题考查向量在几何中的应用、三角函数的性质、二倍角公式等基础知识,考查运算求解能力,考查数形结合思想.设角引入坐标是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的轨迹方程是y=f(x),设f(x)的最小正周期为T,y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为S,则ST=
4(π+1)
4(π+1)
.(说明:“正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.)

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:填空题

如图放置的边长为1的正方形PABC沿x轴滚动,设顶点P(x,y)的轨迹方程是y=f(x),则函数f(x)的最小正周期为(    );y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为(    )。
说明:“正方形PABC沿x轴滚动”包括沿x轴正方向和沿x 轴负方向滚动,沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿x轴负方向滚动。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图放置的边长为1的正三角形PAB沿x的负半轴按逆时针方向滚动,设顶点的纵坐标与横坐标的函数关系式是,则在区间[-2,1]上的解析式是      

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图放置的边长为1的正三角形PAB沿x的负半轴按逆时针方向滚动,设顶点的纵坐标与横坐标的函数关系式是,则在区间[-2,1]上的解析式是      

 

查看答案和解析>>

同步练习册答案