【题目】设,函数.
(Ⅰ)讨论函数在定义域上的单调性;
(Ⅱ)若函数的图象在点处的切线与直线平行,且对任意,,不等式恒成立,求实数的取值范围.
【答案】(Ⅰ)分类讨论,见解析(Ⅱ)
【解析】
(Ⅰ)求出函数的定义域以及导函数,然后分类讨论、或,根据导数与函数单调性的关系即可求解.
(Ⅱ)由导数的几何意义可得,求得,从而可得解析式,由(Ⅰ)知,时,的定义域内单减,不等式恒成立转化为恒成立,令,可知在内单减,只需恒成立,分离参数法,转化为即可.
(Ⅰ)的定义域是.
.
(1)当时,,的定义域内单增;
(2)当时,由得,.
此时在内单增,在内单减;
(3)当时,,的定义域内单减.
(Ⅱ)因为,所以,.
此时.
由(Ⅰ)知,时,的定义域内单减.
不妨设,
则,即,
即恒成立.
令,,则在内单减,即.
,,.
而,当且仅当时,取得最小值,
所以,故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是等边三角形,在底面ABC上的射影为的重心G.
(1)已知,证明:平面平面;
(2)若三棱柱的侧棱与底面所成角的正切值为,,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,、.
(1)若,且函数的图象是函数图象的一条切线,求实数的值;
(2)若不等式对任意恒成立,求实数的取值范围;
(3)若对任意实数,函数在上总有零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=0,(n∈N*),前n项和为Sn (参考数据: ln2≈0.693,ln3≈1.099),则下列选项中错误的是( )
A.是单调递增数列,是单调递减数列B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com