【题目】已知函数, .
(1)当时,求的单调区间;
(2)当时,若存在使得成立,求实数的取值范围.
【答案】(1) 的单调递增区间为,不存在单调递减区间;(2)
【解析】试题分析: (1)当时, ,对函数求导,令解出x的范围,可得函数的单调递增区间为,即定义域内单调递增;(2) 据题意,得在上有解,设,则的最小值大于0,对函数求导判断单调性,进而得出最小值,解出m的范围即可.
试题解析:
(1)当时, ,所以 .
所以当时, ,
所以的单调递增区间为,不存在单调递减区间.
(2)据题意,得在上有解,
设 ,
则,所以当, 时, ,
所以在区间上是增函数,所以当时, ,
解得,所以的取值范围是.
点睛: 本题考查函数导数与单调性,恒成立有解问题.方程的有解问题可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.
科目:高中数学 来源: 题型:
【题目】给出以下四个问题:①x,输出它的绝对值.②求面积为6的正方形的周长.③求三个数a,b,c中最大数.④求函数的函数值.其中不需要用条件语句来描述其算法的有 个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+(y﹣2)2=r2(r>0)与曲线C:(y﹣2)(3x﹣4y+3)=0有三个不同的交点.
(1)求圆M的方程;
(2)已知点Q是x轴上的动点,QA,QB分别切圆M于A,B两点. ①若 ,求|MQ|及直线MQ的方程;
②求证:直线AB恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
[85,95) | ① | 0.025 |
[95,105) | 0.050 | |
[105,115) | 0.200 | |
[115,125) | 12 | 0.300 |
[125,135) | 0.275 | |
[135,145) | 4 | ② |
[145,155] | 0.050 | |
合计 | ③ |
(1)根据图表,①②③处的数值分别为、、;
(2)在所给的坐标系中画出[85,155]的频率分布直方图;
(3)根据题中信息估计总体落在[125,155]中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点 (,且)为圆心的圆与轴交于点, ,与轴交于点, ,其中为坐标原点.
(1)求证: 的面积为定值;
(2)设直线与圆交于点, ,若,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的各项均为正数,其前n项和为Sn , 若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)设bn=log2an , 证明数列{bn}是等差数列;
(3)设cn=(﹣1)nbn , 求T=|c1|+|c2|+|c3|+…+|cn|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,已知椭圆C: =1(a>b>0)的离心率e= ,左顶点为A(﹣4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求 的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com