精英家教网 > 高中数学 > 题目详情
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.

(1)求证:DC平面ABC;     
(2)设,求三棱锥A-BFE的体积.
(1)证明:见解析;(2).

试题分析:(1)注意分析折叠前后变化的关系及不变化的关系.在图甲中可得
在图乙中,可得AB⊥CD.根据DC⊥BC,即可得到DC⊥平面ABC.
(2)首先根据E,F分别为AC,AD的中点,得到EF//CD,根据(1)知,DC⊥平面ABC,得到EF⊥平面ABC,从而得到 
在图甲中,根据给定角度及长度,计算“不变量”,得,BD=2,BC=,EF=CD=
利用体积公式计算即得所求.
解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,等体积转化的方法,是立体几何中常用方法之一.
(1)证明:在图甲中∵ ∴
                                     1分
在图乙中,∵平面ABD⊥平面BDC , 且平面ABD∩平面BDC=BD
                          4分
,且,∴DC⊥平面ABC.           6分
(2)解:,                 7分
又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC,                   8分
所以,                      9分
在图甲中,
得,                   10分

              11分
                           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求证:平面PBC⊥面PDC
(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,平面平面是边长为2的正三角形,
,且.

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,是边长为4的正三角形,平面平面的中点.

(1)证明:
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案