精英家教网 > 高中数学 > 题目详情

已知曲线的方程为:为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴、轴交于点不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线与曲线交于不同的两点,且,求曲线的方程.

(1)圆;(2)详见解析;(3).

解析试题分析:(1)在曲线的方程两边同时除以,并进行配方得到,从而得到曲线的具体形状;(2)在曲线的方程中分别令求出点的坐标,再验证的面积是否为定值;(3)根据条件得到圆心在线段的垂直平分线上,并且得到圆心与原点的连线与直线垂直,利用两条直线斜率乘积为,求出值,并利用直线与圆相交作为检验条件,从而确定曲线的方程.
试题解析:(1)将曲线的方程化为
可知曲线是以点为圆心,以为半径的圆;
(2)的面积为定值.
证明如下:
在曲线的方程中令,得点
在曲线方程中令,得点
(定值);
(3)过坐标原点,且
圆心的垂直平分线上,
时,圆心坐标为,圆的半径为
圆心到直线的距离
直线与圆相离,不合题意舍去,
,这时曲线的方程为.
考点:1.圆的方程;2.三角形的面积;3.直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点P(-2,-3),圆C:,过P点作圆C的两条切线,切点分别为A、B
(1)求过P、A、B三点的外接圆的方程;
(2)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:x2+y2+2x-4y+3=0,若圆C的切线在x轴、y轴上的截距相等,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知圆C:(x-xo)2+(y-y0)2=R2(R>0)与y轴相切,圆心C在直线l:x-3y=0上,且圆C截直线m:x-y=0所得的弦长为2,求圆C方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,为圆的直径,为垂直的一条弦,垂足为,弦.
(1)求证:四点共圆;
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点E.
 
(1).求证:E为AB的中点;
(2).求线段FB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线xy+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设MN是椭圆C上关于y轴对称的不同两点,直线PMQN相交于点T.求证:点T在椭圆C上.

查看答案和解析>>

同步练习册答案