精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.

(Ⅰ)求实数的值;

(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)先将圆C的方程化成直角坐标方程,直线l化成普通方程,再由圆心到直线的距离以及勾股定理列式可得;(Ⅱ)联立直线l与圆C的方程,根据韦达定理以及参数的几何意义可得.

(Ⅰ)由. 直线的普通方程为, 被圆截得的弦长为,所以圆心到的距离为,即解得.

(Ⅱ)法1:当时,将的参数方程代入圆的直角坐标方程得,

,即,由于,故可设是上述方程的两实根,所以又直线过点,故由上式及的几何意义得, .

法2:当时点,易知点在直线上. 又

所以点在圆外.联立消去得,.

不妨设,所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为,定点,过点且斜率不为零的直线与椭圆交于两点,以线段为直径的圆与直线的另一个交点为,试探究在轴上是否存在一定点,使直线恒过该定点,若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于《中国诗词大会》节目在社会上反响良好,某地也模仿并举办民间诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛.若诗词爱好者甲、乙参赛,他们背诵每一首古诗正确的概率均为

1)求甲进入正赛的概率.

2)若参赛者甲、乙都进入了正赛,现有两种赛制可供甲、乙进行PK,淘汰其中一人.

赛制一:积分淘汰制,电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为,乙背诵每首古诗正确的概率为,设甲的得分为,乙的得分为

赛制二:对诗淘汰制,甲、乙轮流互出诗名,由对方背诵且互不影响,乙出题,甲回答正确的概率为0.3,甲出题,乙回答正确的概率为0.4,谁先背诵错误谁先出局.

i)赛制一中,求甲、乙得分的均值,并预测谁会被淘汰;

ii)赛制二中,谁先出题甲获胜的概率大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,全国人民都在抗击新型冠状病毒肺炎的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用AB两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:

所用的时间(单位:小时)

路线1的频数

200

400

200

200

路线2的频数

100

400

400

100

假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.

1)汽车A和汽车B应如何选择各自的路线.

2)若路线1、路线2一次性费用分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):

到达时间与约定时间的差x(单位:小时)

该车得分

0

1

2

生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车AB用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,已知分别是的中点,将沿折起,使的位置如图所示,且,连接

1)求证:平面平面

2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,图中直棱柱的底面是菱形,其中.又点分别在棱上运动,且满足:.

1)求证:四点共面,并证明∥平面.

2)是否存在点使得二面角的余弦值为?如果存在,求出的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.

1)若,则在第一轮游戏他们获优秀小组的概率;

2)若则游戏中小明小亮小组要想获得优秀小组次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为.

1)求椭圆的方程;

2)若为椭圆上的两个动点,直线的斜率分别为,当时,的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.为自然对数的底数)

1)当时,求处的切线方程,并讨论的单调性;

2)当时,,求整数的最大值.

查看答案和解析>>

同步练习册答案