精英家教网 > 高中数学 > 题目详情
17.已知等比数列{an}的公比是正数,且a3•a7=4a42,a2=2,则a1=(  )
A.1B.$\sqrt{2}$C.2D.$\frac{\sqrt{2}}{2}$

分析 由已知及等比数列的性质可得,a3•a7=a4•a6,求出公比q=2,然后结合a2=2,可求a1

解答 解:∵a3•a7=4${a}_{4}^{2}$,
由等比数列的性质可得,a3•a7=a4•a6
∴a6=4a4
∴${q}^{2}=\frac{{a}_{6}}{{a}_{4}}$=4
∵q>0
∴q=2
∵a2=2,则a1=1
故选A

点评 本题主要考查了等比数列的通项公式及等比数列的性质的简单应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+$\frac{x^2}{2!}$+$\frac{x^3}{3!}$+…+$\frac{x^n}{n!}$(n∈N*
(1)证明:f(x)≥g1(x);
(2)当x>0时,用数学归纳法证明:f(x)>gn(x);
(3)证明:1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)<e(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于每个自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点间的距离,则|A1B1|+|A2B2|+…+|A2015B2015|的值是$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且各项都是正数,2Sn=an+12-an+1(n∈N*),a1=1,
(1)求a2,a3
(2)求数列{an}的通项公式;
(3)求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=ax5+bsinx+1,且f(-2)=3,则f(2)=-1,f(x)图象对称中心为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)写出数列{an}的前五项,其中a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$.
(2)在等比数列{an}中,已知a1=-1,a4=64,求q,S4
(3)已知数列{an}的前n项和为Sn=n2+2n+3,求这个数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinα是方程5x2-7x-6=0的根,α是第三象限角.
(1)分别求sinα,cosα,tanα的值;
(2)求$\frac{sin(α-\frac{3π}{2})cos(\frac{3π}{2}-α)}{sin(α+\frac{π}{2})cos(\frac{π}{2}-α)}•ta{n}^{2}(π-α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用数学归纳法证明:$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}=\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A,B,C的对边分别为a,b,c,若$\sqrt{3}$a=2bsinA,则锐角B的大小为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案