【题目】已知函数且.
(1)当时,求函数的单调区间与极值;
(2)当时, 恒成立,求的取值范围.
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①若α、β为第一象限角,且α>β,则sinα>sinβ
②函数y=|sinx|与y=|tanx|的最小正周期相同
③函数f(x)=sin(x+ )在[﹣ , ]上是增函数;
④若函数f(x)=asinx﹣bcosx的图象的一条对称轴为直线x= ,则a+b=0.
其中正确结论的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ) 图象上的任意两点,且角φ的终边经过点 ,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为 .
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当 时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,焦点为,点在抛物线上,且到的距离比到直线的距离小1.
(1)求抛物线的方程;
(2)若点为直线上的任意一点,过点作抛物线的切线与,切点分别为,求证:直线恒过某一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点与两定点和连线的斜率之积等于.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设直线: ()与轨迹交于、两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.
(1)求抛物线的方程;
(2)设是抛物线上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com