精英家教网 > 高中数学 > 题目详情
记等差数列{an} 的前n项和Sn,利用倒序求和的方法得:Sn=
n( a1+an)2
;类似的,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N+),试类比等差数列求和的方法,可将Tn表示成首项b1,末项bn与项数n的一个关系式,即公式Tn=
 
分析:由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.
解答:解:在等差数列{an}的前n项和为Sn=
n(a1 +an)
2

因为等差数列中的求和类比等比数列中的乘积,
所以各项均为正的等比数列{bn}的前n项积Tn=(b1bn 
n
2

故答案为:
(b1bn)n     
点评:本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
1
2
,S4=20,则S6=(  )
A、16B、24C、36D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
12
,S4=20,则S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若S7=56,则a4=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记等差数列{an}的前n项和为Sn
(1)求证:数列{
Sn
n
}是等差数列;
(2)若a1=1,且对任意正整数n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求数列{an}的通项公式;
(3)记bn=aan(a>0),求证:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax+1
3x-1
,且方程f(x)=-4x+8有两个不同的正根,其中一根是另一根的3倍,记等差数列{an}、{bn}  的前n项和分别为Sn,Tn
Sn
Tn
=f(n)
(n∈N+).
(1)若g(n)=
an
bn
,求g(n)的最大值;
(2)若a1=
5
2
,数列{bn}的公差为3,试问在数列{an} 与{bn}中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列{cn}的通项公式;若不存在,请说明理由.
(3)若a1=
5
2
,数列{bn}的公差为3,且dn=bn-(n-1),h(x)=
x
x+1
.试证明:h(d1)•h(d2)…h(dn)<
1
3n

查看答案和解析>>

同步练习册答案