精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求证:在区间上无零点;

(2)求证:有且仅有2个零点.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)求出,再求出函数的单调区间,从而分析其图像与轴无交点即可.
(2)显然是函数的零点,再分析上和在上无零点,上有一个零点,从而得证.

(1)

时,;当时,

所以上单调递增,在上单调递减.

所以当时,

所以在区间上无零点.

(2)的定义域为

①当时,

所以,从而上无零点.

②当时,,从而的一个零点.

③当时,由(1),所以,又

所以,从而上无零点.

④当时,

所以上单调递减.

,从而上有唯一零点.

⑤当时,,所以,从而上无零点.

综上,有且仅有2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点,轴的正半轴为极轴,建立极坐标系.点的极坐标为.

1)求曲线的极坐标方程;

2)若过点且倾斜角为的直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,

(1)求证:平面平面

(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m375μg/m3之间空气质量为二级,在75μg/m3以上空气质量为超标.如图是某市2019121日到10PM2.5日均值(单位:μg/m3)的统计数据,则下列叙述不正确的是(

A.10天中,125日的空气质量超标

B.10天中有5天空气质量为二级

C.5日到10日,PM2.5日均值逐渐降低

D.10天的PM2.5日均值的中位数是47

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6名党员干部分配到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有(

A.2640B.4800C.1560D.7200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论上的单调性;

2)若,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“若,则”的否命题是“若,则

B. 命题“”的否定是“

C. 处有极值”是“”的充要条件

D. 命题“若函数有零点,则“”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.

(1)请你列出抽到的10个样本的评分数据;

(2)计算所抽到的10个样本的均值和方差

(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆)和圆,已知圆将椭圆的长轴三等分,椭圆右焦点到右准线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点

(1)求椭圆的方程;

(2)若直线分别与椭圆相交于另一个交点为点.

①求证:直线经过一定点;

②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出实数的范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案