精英家教网 > 高中数学 > 题目详情
6.如果cos(3π-α)=$\frac{4}{5}$,且α是第三象限的角,则sin2α=(  )
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

分析 由已知及诱导公式可求cosα,利用同角三角函数关系式可求sinα,根据二倍角公式可求sin2α.

解答 解:∵cos(3π-α)=-cosα=$\frac{4}{5}$,α是第三象限的角,
∴cosα=-$\frac{4}{5}$,sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{3}{5}$,
∴sin2α=2sinαcosα=2×$(-\frac{4}{5})×(-\frac{3}{5})$=$\frac{24}{25}$.
故选:B.

点评 本题主要考查了诱导公式,同角三角函数关系式,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,在等腰梯形ABCD中,AB∥CD,且AB=2CD,设∠DAB=θ,θ∈(0,$\frac{π}{2}$),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,设e1=f(θ),e1e2=g(θ),则f(θ),g(θ)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据极限定义证明:函数f(x)当x→x0时极限存在的充分必要条件是左极限、右极限各自存在并相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的离心率为$\frac{\sqrt{5}}{3}$,且该椭圆与双曲线$\frac{{x}^{2}}{4}$-y2=1焦点相同,求椭圆的标准方程和准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一,乙不值周六,则可排出不同的值班表数为(  )
A.6B.12C.42D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-m≤0},若(2,3)∈A,且(2,3)∉B,m∈Z,求m所有可能的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的众数以及平均分;
(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.(实验班做)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设两相交直线的夹角集合为X,两相交直线l1到l2的角的集合为Y,直线的倾斜角集合为Z,则下面的关系式中正确的是(  )
A.X=Y$\underset{?}{≠}$ZB.X$\underset{?}{≠}$Y=ZC.X$\underset{?}{≠}$Y$\underset{?}{≠}$ZD.X$\underset{?}{≠}$Z$\underset{?}{≠}$Y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式3+5x-2x2≤0的解集为{x|x<-$\frac{1}{2}$或x>3}.

查看答案和解析>>

同步练习册答案