【题目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0对任意的x∈R都成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直线坐标系xOy中,曲线C1的参数方程为 (t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0 , 其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函数g(x)=.
(l)求函数g(x)的解析式;
(2)证明:对任意实数m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的周期为2,当x∈[0,2时,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,则函数y=g(x)的所有零点之和为( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 .
(1)求{an}的通项公式;
(2)设cn=an+bn , 求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,其中a>0且a≠1,若a=时方程f(x)=b有两个不同的实根,则实数b的取值范围是______;若f(x)的值域为[3,+∞],则实数a的取值范围是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com