精英家教网 > 高中数学 > 题目详情

【题目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0对任意的xR都成立,求实数m的取值范围.

【答案】

【解析】

运用对数的运算性质可得A,由诱导公式可得B,即有4cos2x-3mcosx-5≤0对任意的xR都成立,

t=cosx,-1≤t≤1,则4t2-3mt-5≤0-1≤t≤1恒成立,由二次函数的图象和性质,列不等式组求解即可

解:A=log23log316==4,

B=10sin210°=-10sin30°=-5,

不等式4cos2x-3mcosx-5≤0对任意的xR都成立,

t=cosx,-1≤t≤1,

则4t2-3mt-5≤0对-1≤t≤1恒成立,

可得4+3m-5≤0,且4-3m-5≤0,

解得-m

m的范围是[-].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在直线坐标系xOy中,曲线C1的参数方程为 (t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0 , 其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a22(n1)an1nan10(nN*),求数列{an}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足f(0)=2,fx)-fx-1)=2x+1,求函数fx2+1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+2ax+3-ba≠0,b>0)在[0,3]上有最小值2,最大值17,函数gx)=

l)求函数gx)的解析式;

(2)证明:对任意实数m,都有gm2+2)≥g(2|m|+l);

(3)若方程g(|log2x-1|)+3k-1)=0有四个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx)的周期为2,当x∈[0,2时,fx)=2|x-1|-1,如果gx)=fx)-log3|x-2|,则函数y=gx)的所有零点之和为(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通项公式;
(2)设cn=an+bn , 求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=,其中a>0a≠1,若a=时方程fx)=b有两个不同的实根,则实数b的取值范围是______;若fx)的值域为[3,+∞],则实数a的取值范围是______

查看答案和解析>>

同步练习册答案